2023 رتبة التماثل الدوراني للسداسي المنتظم تساوي

أنت تبحث عن رتبة التماثل الدوراني للسداسي المنتظم تساوي ، سنشارك معك اليوم مقالة حول تناظر دوراني – ويكيبيديا تم تجميعها وتحريرها بواسطة فريقنا من عدة مصادر على الإنترنت. آمل أن تكون هذه المقالة التي تتناول موضوع رتبة التماثل الدوراني للسداسي المنتظم تساوي مفيدة لك.

تناظر دوراني – ويكيبيديا

Generally; To call a form what it is Context period (in English: Rotational symmetry) means that the figure looks the same after being rotated by a certain amount less than 360 degrees.[1]

The axis of rotational symmetry is the line passing through the center around which the figure rotates. The axis is called bi-symmetric, tri-symmetric, quadruple-symmetric, or hexagonal, according to the number of times during a full cycle (i.e. 360 degrees) that the figure appears, taking each time a position similar to the first position. In the case of the bi-symmetric axis, the face appears every 180 degrees. The placement of the crystal is repeated twice in 360 degrees. In the case of the triangular axis, the face appears every 120 degrees, and the position of a shape is repeated, the face appears every 90 degrees, and the position of the crystal is repeated four times within 360 degrees.

The shape may have more than one rotational symmetry, for example, the triskelion that appears on the Isle of Man flag in the adjacent image has triple rotational symmetry by neglecting reflections and turning upside down. The degree of rotational symmetry is how many degrees an object has to be rotated to make it look the same on a different side or a different vertex. It cannot be the same side or top.

Other examples[عدل]

rotational axis of symmetry : is the vertical axis passing through the center of the “symmetrical” figure.

  • Traffic sign, triple rotational symmetry

    Traffic sign, triple rotational symmetry

  • Flat triangular shape of rotational symmetry

    Flat triangular shape of rotational symmetry

C4 (quadruple axis of rotational symmetry)
  • Indian swastika, quadruple symmetric rotation.

    Indian swastika, quadruple symmetric rotation.

axes of symmetry[عدل]

  • quadruple axis: It is the axis passing from the apex of a regular pyramidal shape to the middle of the base. If we hold the pyramid shape with my index finger and thumb and look at one of the faces, then when we rotate the pyramid by 90 degrees, we face the adjacent face, and when we rotate the pyramid by another 90 degrees, the third face of the pyramid faces us, and by rotating the pyramid a third time by 90 degrees we face the fourth face of the pyramid. After another 90 degrees, the first face we started from returns. Accordingly, the pyramid has a quadrilateral axis of symmetry. This body does not have another quadrilateral axis.
  • quadruple axis: In the case of a double pyramid, that is, two identical pyramids that are fused at the base. This object also has one axis of quadrilateral symmetry. This axis is the passage between the two peaks of the two pyramids.

Axes of symmetry of the cube[عدل]

A cube has several axes of rotational symmetry:

First: Three axes of quadrilateral symmetry:

With our thumb and forefinger, we hold the cube from the center of two parallel faces vertically, and we look horizontally at one of its faces. We can rotate the cube around this axis by 90 degrees (four times), until the first surface is facing us.

Since a cube has six symmetric faces, it has three quadrilaterals of rotation.

Second: Six axes of bilateral symmetry:

Grab your thumb and forefinger from the center of two parallel edges of the cube. We see its square surface in front of the eyes. When turning the cube 180 degrees, the opposite face appears. This axis is the binary axis of rotational symmetry of the cube. Since the cube has 12 edges, it has 6 biaxial rotational symmetry axes.

Third: Four axes of triple symmetry:

Hold the thumb and forefinger at two opposite corners of the cube. We can rotate the cube every 120 degrees in order to see the same shape as the faces opposite us. And after three times, the shape we started with after 360 degrees. The cube also has four triangular axes of symmetry.

All this also applies to the tetragonal crystal system

  • Simple quadrant

    Simple quadrant

  • Central quadrant

    Central quadrant

Hexagonal crystal system[عدل]

The hexagonal crystal system has two parallel hexagonal faces, and six identical rectangular faces on either side.

What are its axes of rotational symmetry?

First: one axis of rotational symmetry:

It is that axis when we hold our index finger and thumb from the center of the two hexagonal surfaces. We start this position vertically and look at one of the rectangular faces. We rotate the hexagonal crystal by 60 degrees, so we see the second rectangular surface in front of us, and after a second rotation by 60 degrees, we see the third rectangular surface. And so on until we have the surface from which we started rotating.

That is, after 6 times 60 degrees, and it has only this six-axis of rotational symmetry.

Second: Six bilateral axes of rotational symmetry:

When we hold our thumb and forefinger in the middle of two oblong faces, and we see facing us one of the two hexagonal surfaces. When we rotate the hexagonal crystal 180 degrees, the second hexagonal surface comes in front of us, and after rotating it another 180 degrees, the hexagonal surface we started with returns. That is, the axis connecting the index finger and the thumb is a bilateral axis of symmetry. Since the hexagonal crystal has six rectangular surfaces, the hexagonal crystal has three bilateral axes of rotational symmetry.

So where are the other three biaxes of rotational symmetry?

We find them when we hold our thumb and forefinger in the middle of one of the sides of the hexagonal crystal and the side opposite it. We see one of the two hexagonal surfaces. We repeat what we did in the past, and we find that the hexagonal crystal has three axes of this type.

The hexagonal crystal has 6 bilateral axes of rotational symmetry.

Other forms of hexagonal crystals[عدل]

  • hexagonal Crystal shape
  • hexagonal-dipyramidal

    hexagonal-dipyramidal

  • hexagonal-prismatic

    hexagonal-prismatic

  • Combination Prisma – Pyramide

    Combination Prisma – Pyramide

  • Combination Prisma with pyramidal Base

    Combination Prisma with pyramidal Base

other systems[عدل]

The following solid symmetries are called Archimedes solids and are characterized by large numbers of axes of rotational symmetry:

Archimedean solids
Truncated tetrahedron.png
truncated tetrahedron
Truncated octahedron.png
truncated octahedron
Truncated icosahedron.png
Twenty faces of the head section
Great rhombicuboctahedron.png
truncated cuboctahedron
Great rhombicosidodecahedron.png
truncated icosidodecahedron
  • There are also 9 solid shapes called “Johnson solids”:
Prismoids
Hexagonal prism.png
Hexagonal prism [الإنجليزية]
Hexagonal antiprism.png
Hexagonal antiprism
Hexagonal pyramid.png
Hexagonal pyramid
Other symmetric polyhedra
Truncated triakis tetrahedron.png
Truncated triakis tetrahedron
Truncated rhombic dodecahedron2.png
Truncated rhombic dodecahedron
Truncated rhombic triacontahedron.png
Truncated rhombic triacontahedron
Hexpenttri near-miss Johnson solid.png

Reference[عدل]

  1. ^ Information about rotational symmetry at britannica.com. britannica.com. Archived from the original on 2016-06-11.

See also[عدل]

  • perspective
  • symmetry (physics)
  • reflection symmetry
  • gateway iconMathematical Engineering Portal
  • gateway iconArts portal
  • gateway iconMathematics portal
  • gateway iconPhysics portal

  • A
  • N
  • T
Quantum mechanics
background
  • Introduction
  • history
    • Timetable
  • Classic mechanics
  • old quantum theory
  • dictionary
basics
  • Bourne base
  • Brackett symbol
  • call
  • density matrix
  • energy level
    • fundus condition
    • excited state
    • breakout levels
    • Point energy – zero
  • tangle
  • hamiltonian
  • interference
  • decoherence
  • measurement
  • not topical
  • quantum state
  • quantum superposition
  • Subway
  • Scattering theory
  • Symmetry in quantum mechanics
  • suspicion
  • wave function
    • Collapse
    • Wave-particle duality
formulas
  • Mathematical formulation
  • Heisenberg
  • interaction
  • Matrix mechanics
  • Schrödinger
  • Path integration formula
  • phase space
Equations
  • Dirac
  • Klein-Gordon
  • Paoli
  • Rydberg
  • Schrödinger
explanations
  • explanations
  • Bishan
  • Compatible dates
  • Copenhagen
  • De Broy-Boom
  • Squad
  • hidden variable
    • the local
  • The many worlds
  • Objective breakdown
  • Quantitative logic
  • relational
  • transactions
  • Von Neumann-Wegner
Experiences
  • Bell’s inequality
  • Davison-Germer
  • Quantum eraser for late selection
  • Naughty Young
  • Frank-Hertz
  • Mach-Zehnder interferometer
  • Elizur-Weidmann
  • Popper
  • Quantum Eraser
  • Stern-Gerlach
  • The late choice of Wheeler
Science
  • Quantum Biology
  • Quantum chemistry
  • Quantum chaotic
  • Quantum cosmology
  • Quantitative calculus
  • Quantum dynamics
  • Quantitative engineering
  • Quantification dilemma
  • Quantitative stochastic calculus
  • A little time
technology
  • Quantum algorithm
  • quantum amplifier
  • quantum vector
  • Quantitative cellular automation
    • Limited amount of automation
  • quantitative channel
  • quantum circuit
  • Quantum complexity theory
  • Quantum computation
    • Timetable
  • Quantum encryption
  • Quantum electronics
  • Quantitative error correction
  • Quantitative imaging
  • Quantum image processing
  • Quantum information
  • Quantum cryptography
  • Quantitative logic
  • Quantum Logic Gate
  • quantitative machine
  • Quantitative machine learning
  • Quantum super material
  • Quantification Science
  • quantitative network
  • quantum neural network
  • Quantum Optics
  • Quantum programming
  • Quantum sensing
  • quantitative simulation
  • Quantum teleportation
Accessories
  • Casimir effect
  • Quantum statistical mechanics
  • Quantum field theory
    • history
  • quantum gravity
  • Relativistic Quantum Mechanics
related
  • Schrödinger’s cat
    • in popular culture
  • Quantitative mysticism
rating page Category Portal.svg the gate Symbol question.svg Commons
Context period On sister projects:
  • Commons-logo.svgPictures and audio from Commons.

Retrieved from «https://en.wikipedia.org/w/index.php?title=rotational-symmetry&oldid=58906750»

فيديو حول رتبة التماثل الدوراني للسداسي المنتظم تساوي

التماثل الدوراني في المضلعات|تعليم بلا حدود

شرح عملي للتماثل الدوراني في المضلعات

سؤال حول رتبة التماثل الدوراني للسداسي المنتظم تساوي

إذا كانت لديك أي أسئلة حول رتبة التماثل الدوراني للسداسي المنتظم تساوي ، فيرجى إخبارنا ، وستساعدنا جميع أسئلتك أو اقتراحاتك في تحسين المقالات التالية!

تم تجميع المقالة رتبة التماثل الدوراني للسداسي المنتظم تساوي من قبل أنا وفريقي من عدة مصادر. إذا وجدت المقالة رتبة التماثل الدوراني للسداسي المنتظم تساوي مفيدة لك ، فالرجاء دعم الفريق أعجبني أو شارك!

قيم المقالات تناظر دوراني – ويكيبيديا

التقييم: 4-5 نجوم
التقييمات: 3 0 0 5
المشاهدات: 5 4 9 8 8 8 4 8

بحث عن الكلمات الرئيسية رتبة التماثل الدوراني للسداسي المنتظم تساوي

[الكلمة الرئيسية]
طريقة رتبة التماثل الدوراني للسداسي المنتظم تساوي
برنامج تعليمي رتبة التماثل الدوراني للسداسي المنتظم تساوي
رتبة التماثل الدوراني للسداسي المنتظم تساوي مجاني

المصدر: ar.wikipedia.org

Read  2023 الطبيعه الصامته هي الاشياء الجامده التي لا حركه لها

Related Posts

2023 صحيفة التيار السودانية الصادرة اليوم

صحيفة التيار السودانية الصادرة اليوم هي صحيفة يومية سودانية مؤسسة في عام 2009. يقدم الصحيفة الأخبار الوطنية والدولية والمنوعة من الموضوعات الأخرى، بالإضافة إلى الحوارات السياسية والثقافية…

2023 شعار كلية الملك عبدالله للدفاع الجوي

“العزيز على الطيارة” https://ar.wikipedia.org/wiki/%D9%85%D9%84%D9%81:Saudi_King_Abdullah_Air_Defense_College.png#شعار كلية الملك عبدالله للدفاع الجوي ملف ملف التاريخ استخدام الملف الاستخدام العام للملف البيانات الوصفية لا توجد دقة أعلى متوفرة. Saudi_King_Abdullah_Air_Defense_College.png ‏(503 ×…

2023 الحلف بغير الله تعالى من أنواع الشرك

الشرك بغير الله يشمل الشرك بالأشخاص، والشرك بالأشياء، والشرك بالأعباء، والشرك بالأصنام، والشرك بالأشباح، والشرك بالأحكام الإجتماعية، والشرك بالأحكام الإدارية، والشرك بالأحكام القانونية، والشرك بالأحكام الدينية. حمد…

2023 Khwaja Zarif Baba Syed Zarif Chishti

Khwaja Zarif Baba Syed Zarif Chishti was a Sufi saint who lived in the late 19th century in the town of Chisht, in the Indian state of…

2023 اعراض الجن العاشق للمتزوجة اسلام ويب

جن العاشق يشير إلى شخص يشعر بحب شخص آخر بشدة، ويحاول فعل كل ما يمكنه لإثبات ذلك. يمكن للجن العاشق أن يظهر علامات الحب مثل الحناء أو…

2023 الشيخ ثنيان بن فهد الثنيان ويكيبيديا

ثنيان بن فهد الثنيان هو عالم دين وشيخ الإسلام في منطقة الشام، ويعتبر من أهم العلماء الإسلاميين في العصر الحديث. ولد في مدينة حمص الشام في عام…