أنت تبحث عن تعتمد إشارة مركبة المتجهه على الربع الذي تقع فيه ، سنشارك معك اليوم مقالة حول متجه – ويكيبيديا تم تجميعها وتحريرها بواسطة فريقنا من عدة مصادر على الإنترنت. آمل أن تكون هذه المقالة التي تتناول موضوع تعتمد إشارة مركبة المتجهه على الربع الذي تقع فيه مفيدة لك.
متجه – ويكيبيديا
في الرياضيات، وبشكل خاص في التحليل الاتجاهي، المُتَّجِه[1] أو المتجهة[2] أو الشعاع[3] أو الدَّاسع[4] أو الدَّوْسَع[4] (بالإنجليزية: Vector) هو سهم يتجه من نقطة إلى أخرى. يتحدد كل متجه في الرياضيات بثلاثة عناصر: المقدار وهو كمية قياسية تُمَثًّل بطول المتجه، الاتجاه يمكن تحديده في فضاء ثلاثي الأبعاد عن طريق زوايا اويلر، ونقطة التأثير وهي النقطة التي ينطلق منها المتجه[بحاجة لمصدر]. ومع أن المتجه يوصف بدلالة أرقام بعضها تعتمد على نوع جملة الإحداثيات، إلا أنه لا يعتمد على جملة الإحداثيات.
إذا اعتبرت مجموعة أزواج النقط في المستوى أو في الفضاء، فإنه يمكن تعريف علاقة التكافؤ التالية:
- يكون للزوج (A, B) علاقة مع الزوج (C, D) إذا وفقط إذا كان رباعي الأضلاع ABDC متوازيا للأضلاع.
ليس من الصعب التحقق من أن هذه العلاقة هي فعلا علاقة تكافؤ. هي علاقة انعكاسية وتماثلية ومتعدية. بالنظر إلى علاقة التكافؤ هذه، المتجه هو صنف تكافؤ من هذه العلاقة. من خلال هذا التعريف، يستنتج أن المتجه، في الرياضيات، هو كائن لا يرتبط بالمفهوم الفيزيائي لنقطة. في الرياضيات، لا تدخل نقطة في تعريف المتجه. قد يدخل مفهوم النقطة في تعريف المتجه في الفيزياء (النقطة حيث تطبق قوة ما على سبيل المثال).
المثال المشهور للمتجه في الفيزياء هو القوة. له مقدارٌ واتجاهٌ في فضاء ثلاثي الأبعاد ونقطة تأثير. كما تتبع قاعدة جمع المتجهات (حسب قاعدة متوازي الأضلاع) عندما نريد جمع قوى متعددة.
التاريخ[عدل]
يمتد تاريخ المتجهات كما تُعلم حاليا على حوالي مائتي عام. شارك ذلك الكثير من العلماء.
طور العديد من العلماء خلال النصف الثاني من القرن التاسع عشر، أنظمة تشبه الأنظمة المستعملة حاليا. منهم أوغستين لوي كوشي وهيرمان غراسمان وأوغست فيرديناند موبيوس وأديمار جان كلود بري دو سانت وماثيو أوبرايان.
تمثيل المتجهات[عدل]
يشار إلى المتجهات عادة بحروف صغيرة ثخينة، مثل a أو مائلة أيضا مثل a (تمثل الحروف الكبيرة عادة المصفوفات). كما يصطلح على كتابتها
أو a عند كتابتها باليد. إذا كان المتجه يمثل إزاحة من النقطة A إلى النقطة B كما في الشكل، يرمز عندها له بـ
أو AB. يستخدم رمز القبعة (^) للإشارة إلى متجهات الوحدة، كما في
.
للقوة متجه طوله يبين مقدارها واتجاه المتجه تمثل إتجاه القوة.
تظهر المتجهات في المخططات والرسومات كأسهم (قطع مستقيمة موجهة)، كما هو موضح في الشكل. تسمى هنا النقطة A المبدأ، وتسمى النقطة B الرأس. يتناسب طول السهم مع مقدار المتجه، بينما يشير اتجاه السهم إلى اتجاه المتجه.
ونحتاج في المخططات ثنائية البعد إلى ترميز المتجه بدوائر صغيرة (كما في الشكل جانبا)، حيث تكون بعض المتجهات عمودية على مستوي المخطط. يرمز للمتجه بنقطة داخل دائرة صغيرة عندما يكون المتجه متجها خارج المخطط باتجاه المشاهد. بينما يرمز له بدائرة مرسوم في داخلها إشارة الضرب عندما يكون المتجه متجها إلى داخل المخطط. ويمكن تذكرها باعتبار النقطة هي منظر لرأس السهم، وإشارة الضرب هي منظر لذيل السهم (الريشة).

قد يكون التمثيل البياني من أجل حساب المتجهات متعبًا ومعقدًا. فالمتجهات في الفضاء الإقليدي متعدد الأبعاد يمكن أن تمثل في نظام إحداثي ديكارتي. يمكن تعيين نهاية المتجه بوضعها في قائمة مرتبة من الأعداد الحقيقية.
وكمثال في الفضاء ثنائي الأبعاد (الشكل جانبا)، يكتب المتجه من مبدأ الإحداثيات O = (0,0) إلى النقطة A = (2,3) بالشكل
في الفضاء الإقليدي ثلاثي الأبعاد (أو
)، تعرف المتجهات بثلاثة أرقام تمثل الإحداثيات الكارتيزية لنقطة النهاية (a,b,c):
توضع هذه الأعداد غالبا في مصفوف عمود أو مصفوف سطر ، وخصوصا عندما نتعامل مع المصفوفات، كالتالي:
الطريقة الأخرى لتمثيل المتجه في الفضاء ثلاثي الأبعاد هي باستخدام متجهات الوحدة الأساسية الثلاث:
وفق هذا الاصطلاح، يكتب أي متجه في الفضاء الاتجاهي ثلاثي الأبعاد
بالشكل:
في دروس الفيزياء التمهيدية، تستبدل هذه المتجهات الثلاث بـ
(أو
)، ولكن تعارض هذه التسمية مع دليل الترميز (Index notation) واصطلاح تجميع (summation convention) المستخدمين في المستويات المتقدمة في الرياضيات، والفيزياء والهندسة.
خصائص أساسية[عدل]
يستخدم المقطع التالي نظاما إحداثيا ديكارتيا مع متجهات وحدة أساسية
ويفترض أن جميع المتجهات تبدأ من مركز الإحداثيات O. وتعني كل من:
- وحدة متجه في اتجاه المحور x
- وحدة المتجه في اتجاه المحور y
- وحدة المتجه في اتجاه المحور z
- وتستخدم الإحداثيات (1,0,0), (0,1,0), (0,0,1) بصفة أساسية مع البلورات، في وصفها وحساباتها.
يكتب المتجه a على الوجه التالي:
(يمكن تخيل المتجه a يبدأ من ركن في بلورة مكعبة أو متوازية الأضلاع وينتهي في ركن آخر. أو أن يبدأ في نظام إحداثي كروي من المركز وينتهي عند تقابله بسطح الكرة).
تساوي المتجهات[عدل]
يقال عن متجهين أنهما متساويان إذا كان لهما نفس المقدار ونفس الاتجاه. وعلى هذا الوجه تكون المتجهات متساوية إذا تساوت إحداثياتها، فالمتجهان:
و
متساويين إذا وفقط إذا تحقق
جمع المتجهات وطرحها[عدل]
يمكن جمع المتجهات بطريقة متوازي أضلاع القوى الذي يتبع أحد قوانين الميكانيكا الذي ينص على أن:«إذا عملت قوتان في نقطة فيمكن أن يعبر عنهما بقوة واحدة.» تسمى تلك القوة «محصلة».
محصلة متجهين متساويين ومتضادين تساوي صفرا.
عمليا نقوم برسم متجهين للقوتين (أي نختار طول معين لكل منهما) ونمثل اتجاهيهما بسهمين. نرسم متوازيين للسهمين فيكمل تقاطعهما شكل متوازي الأضلاع. نرسم خط يبدأ من زاوية التقاء بداية المتجهين ونوصل رأسه إلى الزاوية المقابلة فيكون بهذا قطر متوازي الأضلاع الذي يمثل محصلة المتجهين.
معكوس تلك العملية يسمى تحليل القوة إلى مركبتين، حيث نجزئ متجه قوة ما إلى مركبتين عموديتين على بعضهما البعض، ومن خلال تلك العملية يمكن حساب مقدار كل من المركبتين الممثلين للقوة الأصلية ولكن بالنسبة للإحداثيات الديكارتية.
يمكن تعميم هذه الطريقة للحصول على محصلة عدة قوي، ثلاثة أو أربعة أو أكثر… فيما يسمى مضلع القوى.
ليكن a , b متجهين في نفس الاتجاه، فيكون مجموعهما بافتراض تساويهما:
- a + a = 2a
وفي حالة تضادهما:
- a – a = 0
وفي حالة أخرى مع اعتبار مركباتها نفترض أن:
a=a1e1 + a2e2 + a3e3
و
b=b1e1 + b2e2 + b3e3,
حيثe1،e2، e3 هي متجهات الوحدة متعامدة.
فيكون مجموع a وb هو:
ويمكن تمثيل جمع المتجاهات بشكل بياني:
بوضع بداية المتجه b عند نهاية المتجه a، ثم رسم متجه من بداية المتجه a إلى نهاية المتجه b. يمثل المتجه الجديد المرسوم a + b، كما هو مبين في الشكل 2.
تسمى طريقة الجمع هذه بقاعدة متوازي الأضلاع، لأن a وb يشكلان أضلاع متوازي الأضلاع.
طرح a وb هو:
يمكن تمثيل طرح المتجهات بيانيًا أيضًا كما يلي: لطرح b من a، نضع نهاية a وb عند نفس النقطة، ثم يرسم سهم من نهاية b إلى نهاية a. يمثل هذه المتجه الجديد a − b، كما هو موضح في الشكل 3.
ضرب المتجهات في عدد حقيقي[عدل]
متجهات وغير المتجهات[عدل]
أمثلة لكميات متجهة:
- قوة
- الازاحة
- السرعة يمكن تمثيلها كمتجهة، كمثال 5 متر لكل ثانية، بإتجاه الاعلى تمثل متجة (0,5), حيث يمثل المحور الصادي، الاتجاه إلى الأعلى
- التسارع
أمثلة لكميات غير متجهة (لا يمكن تمثيلها بمتجه):
- الطاقة
- الزمن
- الكثافة
- اللزوجة
- الحرارة
جمع متجهين بالرسم البياني[عدل]
نفترض أن متجهين تؤثر على جسم. يمكننا بواسطة الرسم البياني تعيين المحصلة، كالآتي:
- نرسم المتجهين كسهمين بمقياس رسم معين، من حيث المقدار والاتجاه،
- نرسم من رأس السهم الأول خطا موازيا للسهم الثاني،
- ونرسم من رأس السهم الثاني خطا موازياً للسهم الأول. يتقاع الخطان ويكتمل متوازي الأضلاع.
- المحور الباديء من نقطة تأثير المتجهين إلى نقطة تقاطع الخطين هي محصلة المتجهين، وتقوم مقامهما.
-
خطوة 1
-
خطوة 2
-
خطوة 3
-
خطوة 4
مراجع[عدل]
- ^
- منير البعلبكي؛ رمزي البعلبكي (2008). المورد الحديث (بالعربية والإنجليزية) (ط. 1). بيروت: دار العلم للملايين. ص. 1303. ISBN 978-9953-63-541-5. OCLC 405515532. ويكي بيانات Q112315598.
- المعجم الموحد لمصطلحات الرياضيات والفلك. الرباط: مركز تنسيق التعريب. 1990. ص. 159.
- موفق دعبول؛ بشير قابيل؛ مروان البواب؛ خضر الأحمد؛ خضر الأحمد (2018)، معجم مصطلحات الرياضيات (PDF) (بالعربية والإنجليزية)، دمشق: مجمع اللغة العربية بدمشق، ص. 749، ويكي بيانات Q108593221
- ^ يوسف خياط، معجم المصطلحات العلمية والفنية: عربي فرنسي انكليزي لاتيني (بالعربية، الإنجليزية، الفرنسية، واللاتينية)، دار لسان العرب، ص. 711، LCCN 78970350، OCLC 9419197، ويكي بيانات Q107580089
- ^ “1AS S – الرياضيات – الهندسة – الأشعة والهندسة التحليلية”. www.imadrassa.com. مؤرشف من الأصل في 2019-12-24. اطلع عليه بتاريخ 2022-02-19.
- ↑ أ ب إدوار غالب. الموسوعة في علوم الطبيعة (بالعربية، اللاتينية، الألمانية، الفرنسية، والإنجليزية). دار المشرق. ص. 543. ISBN 2-7214-2148-4. ويكي بيانات Q113297966.
انظر أيضاً[عدل]
متجه في المشاريع الشقيقة: | |
|
- متوازي أضلاع القوى
- مضلع القوى
- مؤثر
- مؤثر دل
- مؤثر لابلاس
- موتر
- دلتا v (علوم الفضاء)
مواضيع الجبر الخطي
|
|
---|---|
معادلة خطية |
نظام المعادلات الخطية-محدد>(محدد مقتصر-صيغة كوشي-بينيه-قاعدة كرامر-حذف غاوس-جوردان )-خوارزمية شتراسن
|
مصفوفات |
نظرية المصفوفة – جمع المصفوفات – ضرب المصفوفات – مصفوفة التحويلِ الأساسية-متعددة حدود مميزة- أثر – مبرهنة كايلي-هاميلتون – قيمة خاصة ، شعاع خاص – شكل جوردان الطبيعي – رتبة – مصفوفة معكوسة ، مصفوفة قابلة للعكس > مقلوب كاذب -مصفوفة مصاحبة-تحويل > ( الجداء نقطة -مصفوفة متماثلة-مصفوفة متعامدة- مصفوفة متماثلة منحرفة – نقل مترافق – مصفوفة الوحدة – مصفوفة هيرميتية، ضد هيرميتي )
– معرف إيجابي، نصف معرف إيجابي ، مصفوفة إيجابية معرفة- بفافي مصفوفة -تقدير -مصفوفة قطرية، قطر رئيسي > مصفوفة قطورة – مصفوفة Tridiagonal – مصفوفة هيسينبرغ – مصفوفة مثلثية – نظرية طيفية – مصفوفة قياسية-مصفوفة تويبليتز – مصفوفة هانكل – مصفوفة فانديرموند-مصفوفة كتلوية-مصفوفة متناثرة – مصفوفة دفع – هوية مصفوفة وودبوري – مبرهنة بيرون-فروبانيوس |
تفكيك مصفوفة |
تفكيك تشوليسكي-تفكيك لو-تفكيك كيو آر-نظرية طيفية-تفكيك قيمة مفرد-تفكيك شور>تكملة شور
|
حسابات |
تحويل هاوسهولدر-طريقة مجموع المربعات الدنيا-عملية غرام شميت
|
متجهات |
ضرب قياسي-مجموعة خطية-امتداد خطي-استقلال خطي-أساس خطي-شعاع تنسيقي
|
فضاء شعاعي |
أمثلة الفراغات الشعاعية-تحويل خطي> تحويل غاليلي، تحويل لورينتز-فضاء عمود-فضاء صف-فضاء ملغي ، بطلان- نظرية بطلان غريزة النموِ- فضاء ثنائي > دالة خطية-تعامد (جبر خطي) – متمم متعامد – إسقاط متعامد – دوران غير صحيح – فضاء جزئي
|
جبر متعدد الخطية |
تينسور > ( معالجة كلاسيكية للتينسورات – معالجة متوسطة للتينسور – معالجة خالية من التنسورات ) – موتر >(جبر خارجي-جبر متماثل )
|
فضاء تآلفي |
تحويل أفيني-زمرة أفينية-هندسة تآلفية
|
فضاء إسقاطي |
تحويل إسقاطي-هندسة إسقاطية-سطح الدرجة الثانية
|
ضبط استنادي: مكتبات وطنية |
|
---|
بوابة رياضيات
بوابة الفيزياء
بوابة جبر
فيديو حول تعتمد إشارة مركبة المتجهه على الربع الذي تقع فيه
طرق حساب الزوايا ومعرفة الربع الذي تقع فيه .
طريقة حساب الزوايا الموجبه والسالبه وكيفية ايجاد الربع الذي تقع فيه بأسلوب سهل ومركز / للأستفسار عن اي سؤال يرجى التواصل على الرقم 07717094529 واتس ، تلي أو التواصل على صفحتنا في الفيس بوك محمد بشير سوفيت ودمتم سالمين .😊🥰
سؤال حول تعتمد إشارة مركبة المتجهه على الربع الذي تقع فيه
إذا كانت لديك أي أسئلة حول تعتمد إشارة مركبة المتجهه على الربع الذي تقع فيه ، فيرجى إخبارنا ، وستساعدنا جميع أسئلتك أو اقتراحاتك في تحسين المقالات التالية!
تم تجميع المقالة تعتمد إشارة مركبة المتجهه على الربع الذي تقع فيه من قبل أنا وفريقي من عدة مصادر. إذا وجدت المقالة تعتمد إشارة مركبة المتجهه على الربع الذي تقع فيه مفيدة لك ، فالرجاء دعم الفريق أعجبني أو شارك!
قيم المقالات متجه – ويكيبيديا
التقييم: strong> 4-5 نجوم
التقييمات: strong> 1 5 5 8
المشاهدات: strong> 5 8 7 7 5 4 9 4
بحث عن الكلمات الرئيسية تعتمد إشارة مركبة المتجهه على الربع الذي تقع فيه
[الكلمة الرئيسية]
طريقة تعتمد إشارة مركبة المتجهه على الربع الذي تقع فيه
برنامج تعليمي تعتمد إشارة مركبة المتجهه على الربع الذي تقع فيه
تعتمد إشارة مركبة المتجهه على الربع الذي تقع فيه مجاني
المصدر: ar.wikipedia.org